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AbstrackThepeak in thecurrent-voltage(I-V)charaneristicofadouble-bamerresonant- 
tunnelling structure is broadened and lowered by the application of a magnetic field parallel 
to the layers. The broadening of the peak is roughly linear in the field. The lowering is 
completed at a field strength termed the quenching field. Both effects are described within 
amodelofcoherent tunnellingin aself-mnsistent potential.Thecalculated1-Vcurvesagree 
well with experimental data. 

1. Introduction 

The double-barrier resonant-tunnelling (DBRT) structure is a well-known example of the 
novel devices based on the vertical transport mechanism. Its ability to carry current is 
based on the existence of a resonant state due to the'quantum well between the two 
barriers. This state can be accessible to electrons in the Fermi sea of the reservoirs, 
formed by the doped regions that sandwich the DBRT structure. If we assume the 
tunnelling to be coherent, accessibility amounts to the demand that the energy of the 
resonant state is in the Fermi window of the reservoir. Since the resonance energy with 
respect to the reservoir is tunable by applying a voltage difference across the structure, 
there is always an interval of applied voltages where a current is possible. This vertical 
transport mechanism is essentially one-dimensional. The lateral dimensions only come 
into play in determining the density of states. 

When we apply a magnetic field to a DBRT structure, perpendicular to the growth 
axis and parallel to the barrier layers, some basic aspects of the above picture are 
changed. The tunnelling is no longer dependent on the transverse motion alone. Accessi- 
bility of the resonant state is determined by the exchange of momentum between the 
transverse and lateral directions effected by the magnetic field. This leads to a smaller 
current density at voltages where, in the zero-field case, current was possible since some 
of the formerly resonant electrons are now filtered out on the basis of their lateral 
motion. At voltages where, in the zero-field case, no current was possible, however, 
there will now be some current density found since the magnetic field opens up the 
resonant channel for certain lateral momenta. In fact, the application of a perpendicular 
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field has made the tunnelling into an essentially two-dimensional problem. In com- 
parison with the zero-field case, the resulting current peak is broadened and lowered. 

The implications of the magnetic field can also be described in another way. Let us 
introduce the difference between resonant states that are extended in both reservoirs 
(and which we will call ‘extended’states), and resonant states that are evanescent in one 
of the two reservoirs (and which we will call ‘semi-extended‘ states). The extended 
resonant states contribute to both the charge density in the well and the current density 
through the structure, whereas the semi-extended resonant states contribute only to the 
charge density in the well. In the zero-field case this distinction is not needed since 
all resonant states are extended. The perpendicular field, however, introduces the 
transformation of extended states into semi-extended ones, and the larger the applied 
field strength, the more complete is this transformation. At a certain field strength, all 
electrons are forced into semi-extended states, and hence the current will be zero, 
irrespective ofappliedvoltage. Thiseffect ofthe magnetic fieldcan becalledaquenching 
of the current, and the field strength above which this takes place is named the quenching 
field. 

Experimental evidence for these effects of the transverse magnetic field was pre- 
sented by G d r e t  er a1 [l], Rossel et a1 [2] and Ben Amor et a1 [3, 41, who reported a 
broadening and lowering of the current peak. Some theoretical work along semi-classical 
lines wasdone by Eavesand coworkers [5-7], whose distinction between ‘traversing’and 
‘skipping’ orbits parallels our extended/semi-extended states. A quantum-mechanical 
approach was undertaken by Ancilotto [SI, considering a somewhat different structure 
(showing less interesting properties). We only mention here the work of Plater0 et d[9] 
which constitutes a totally different approach. 

In this paper, a quantum-mechanical description of coherent resonant tunnelling in 
the presence of a perpendicular magnetic field is presented. Starting from the Schro- 
dingerequation (section2), we derive expressions for thevoltage interval where resonant 
charge build-up takesplace, and for the voltage interval where resonant current is found 
(section 3). In section 4, numerical results are presented for GaAs/AlGaAs-based 
structures. Finally we will compare our results with both experimental and theoretical 
studies (section 5). 

2. Schrodinger equation with magnetic field 

The usual way to introduce a magnetic field B into the Schrodinger equation is via the 
substitution (tL/i)V -+ (h/i)V + eA, whereA is the vector potential, related to B via B = 
V x A. Let us choose A to be defined by: 

(0% 0, 0) z c o  

A = I (0 ,  -Bz ,  0 )  O C Z C L  (1) 

yieldingamagneticfieldin thex-directionofstrength BifO < z < L ,  andofzerostrength 
outside this interval. Equation (1) implies a Coulomb gauge V . A  = 0 and a coupling of 
the magnetic field to the y-component of the momentum only. This choice for a magnetic 
field confined to  the interval 0 < z < L agrees with the usual and accepted approach in 
device modelling [ 1,s. 61. It is also supported by the physical processes in the reservoirs, 
where the bulk scattering of carriers will cause effective broadening of the Landau levels 
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Fiure 1. Potential energy of electrons in the 
DBRT structure as a function of position 2 ,  drawn for 
three different values of ky The applied voltage 
V, = 0 V, the magnetic field strength B = 5 T. 

and, eventually a density of states approaching the zero-field behaviour [5].  The value 
of L is thus expected to be related to the mean free path of electrons in the reservoir. In 
this paper, however, we will treat L as an extra parameter. The possibilities of deter- 
mining L by experiment will be discussed in section 5. The choice (1) has the advantage 
of enabling a transfer matrix approach, with plane wave solutions in the reservoirs, 
which are easy to interpret in terms of current density. 

We insert the vector potential of (1) into the Schrodinger equation: 

(1/2m) ( ( f i / i ) v  + eA(r))”&’(r) + E,(r)y(r) = m ( r )  (2) 

where Y(r) describes the electrons in the conduction band, m is the effective mass of 
this bandandE,(z)isthe bandminimum. Thez-axisis taken alongthegrowthdirection. 
In general, the materials of the barriers and the well will differ in both effective mass 
and band gap. We will, however, take into account only the latter difference, and write 
E,(z), assuming m independent of z. In the reservoir situated at z < 0 we have both 
E,(z) = 0 andA(z) = 0, so that the solutions of (2) are plane waves 

exp(ik,x) exp(ik,y)[A exp(ik,z) + B exp(-ik,z)] 

at energy E = (fiz/2m) (k: +k: + kz). Since the Hamiltonian in (2) is invariant under 
translation in the lateral directions, the wave-number components k, and ky (con- 
trary to k,) are constants of motion. Substituting for Y(r )  the factorization exp(ik$) ex- 
p(ikyy)F(z), we have (2) to read: 

-(hz/Zm)(d2/dr2)F(z) + E,(r)F(z) + U(Z; k;, B)F(z) 

= ( E  - (hz/2m)(k: + k:))F(z) = (fi2k:/2m)F(z) (3)  

where U(z; ky, B)  is a potential energy term introduced by the magnetic field, that is 
quadratic in L and B and linear in k, (see figure 1): 

r<O 

U ( z ;  k,, E )  = (ezB2/2m)z(z  - 2hk,/eB) O<Z<L (4) i“ ( e Z B 2 / 2 m ) L ( L  - 2hkY/eB) L < 2. 

In the absence of E,(z) in (3) ,  we would find for O < z < L  that F(z)  = 
A‘D,(C) + B’D-p-,(ic), where D,(C) is the parabolic cylinder function, 
U = h(k: + k:)/2eB - k, and C = V@@) (z  - hky /eB)  [lo]. A restriction to a non- 
negative integer U would give the well-known Landau levels. Usually, it is the require- 
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ment for normalization on the z-interval (-m, +m) that leads to this quantization of 
energy [ l o ] .  However, since the quadratic potential in (4) applies only to 0 < z < L, we 
have no Landau quantization in this tunnelling problem, and hence no Landau levels. 
Instead, we calculate the transmission and reflection coefficients for incoming plane 
waves labelled with k, and scattered by a k,-dependent potential. The eigenfunctions 
F(r; k,. kz) now depend on the lateral momentum, in contrast to the zero-field case, 
although the eigenvalues still depend on k, only. This means that (3) constitutes a 
tunnelling problem where we have to treat every combination (ky ,  k,)  separately. The 
resulting transmission and reflection coefficients will be functions of both transverse and 
lateral momentum. 

H J M F Noteborn et a1 

3. Voltage interval of resonant current 

To find the voltage interval where resonant charge built-up or current takes place we 
make use of the fact that the resonant energy with respect to the band minimum in the 
well is almost independent of the exact potential structure. Hence, we determine this 
energy E, in the unbiased zero-field situation and treat it as a constant. In this section, 
we also assume a constant electric field in the structure, neglecting the effect of the 
charge build-up in the well on the band bending. The potential energy in the well then 
equals -rueV,, where V, is the applied voltage and 0 < (Y < 1 depends on the structure 
parameters. For identical barriers, a= 1/2. Let us first consider the zero magnetic field 
case. For the resonance energy to be in the Fermi window of the reservoir means: 
0 < Eo - aeV, < EF, hence the voltage interval for resonant current and charge build- 
up is: (Eo - EF)/ecr < V. < Eo/ea.  

In the case of a magnetic field, the potential term U(z;  4. B)  of (4) should be 
included, making these relationsdependent on k,. Also, at k e d  k,, the possibleenergies 
related to the transverse momentum are limited to 0 < h’kt/2m < EF - hzk:/2m, i.e. 
the window for the resonance energy is reduced. The condition for resonant charge 
build-up therefore becomes: 

where L ,  is the position of the well. This can again be translated into a corresponding 
voltage interval: 

0 < E o  - aeV, + U(zw; k , ,  E )  < E ,  - hzk:/2m (5) 

Vai(ky,  B )  < Va 

V*(k,, B )  

V&y7 B )  
Va l (ky ,  B )  = ( E ,  - EF)/eor + (hk,” - eBz,)’/Zmeru (6) 

E o / e u  + eB’z$/Zmcu - hkyBr,/mcu 
which is sketched in figure 2. For resonant current to Bow, an additional condition with 
no zero-field analogue is to be introduced. The transverse momentum in the collector 
reservoir should be positive in order to enable an electron to contribute to the current. 
This yields: 

which is trivial for B = 0. Translated in terms of V,, (7) reads: 
Va>Vd(ky,B)=[l / ( l  - c u ) ] ( - E ~ / e + e B ’ ( L *  - r l ) / 2 m - h k Y B ( L - z , ) / m )  ( 8 )  

(see figure 2). If an electron state with momentum ky and resonant k, satisfies (6) but 

E ,  - CueV, + U(L,; k,, B) > -eV, + U(L;  k , ,  B )  (7) 
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WkF 

Figure 2. V.,(ky), V&) and V,(k,) for three dif- 
ferent values of the magnetic field B. The states cor- 
responding to points in the enclosed area contribute 
to the charge density in the well. The hatched area 
represents states that, in addition, wntribute to the 
current through the structure. 

not (8 ) ,  it contributes to the charge density in the well only. This is a so-called ‘semi- 
extended‘state. If the electron state meets both conditions (6) and (8) ,  it contributes to 
both the charge and the current density, and is called ‘extended’. 

The voltage interval that results from (6) depends on ky. Thus, at a given applied 
voltage V,, (6) will be met by only a fraction of all ky-values. This implies a decrease in 
charge density, compared with the zero-field case. Using the fact that hzk$/2m < EF, 
we can define voltage intervals where we have taken into account the contributions of 
all ky. For the charge build-up this means that we have to find the minimum of Val(ky) ,  
denoted by Val, and the maximum of Va2(ky), denoted by Va2. The. latter is equal to 
Vaz(-kF) for all field strengths, kF being the Fermi wave-number. For B < Bo = hkF/ 
ez,, Val = VaB,(eBzw/h). For larger field strengths, it is Val(+kF). Hence, we find for the 
sum of all k,-contributions that, in order for the charge in the well to be non-zero at V,, 
V,  should satisfy: 

These interval bounds as functions of B are shown in figure 3(a). From (9) we see that 
dV.,/dB 0 and dVa/dB > 0, hence both bounds are non-decreasing functions of B. 
Since the upper bound increases faster, the total voltage interval for charge build-up is 
broadened, see figure 3(b). For B 2 Bo this broadening is linear in B: AVa = Va - 
Val = ez$4BBO/2mor = (2hkFz,/mcu)B. 

To find out whether the total voltage interval for resonant current is also broadened, 
we have to take into account the effect of (8) on the bounds. This is an easy but 
complicated matter, depending on (Y, zw/L and EF/Eo. Therefore, we will only give the 
results for the special case that (z,/L)’ < (Y < z,/L and EF < &/(l - 2cuL/zW + 
aL’/z$). Since, experimentally LY = 1/2, &/L = 1/2 and Eo > EF, this is the most 

relevant case. For small field strengths, we find the same bounds as in the charge build- 
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F w r e 3 . ( a )  ?~,(B)andV,,(B),aswe!las ?;(B)and 
V Z ( B ) .  For V ,  between V,,(B) and V,(B) electrons 
c m  enter the well resonantly. For V. between 
V ; ( B )  and V S ( B )  they can leave the well at the 
co!ectof sldei (b) the width of the current peak 
AVa = V, - V., as a function of the magnetic field 
strength B. 

up situation, as expected. If, however, B exceeds a value V - :  

the lower bound is changed to: 

~ ( B )  = [z,/L - a1-I (-&/e + eB2z,(L - z , ) / ~ m )  

whereas the upperbound remains unchanged, !?$(B) = Va(B). This new lower bound 
e ( B )  increases more rapidly than the upper bound, so that at B = B+ the two bounds 
coincide and the voltage interval disappears completely. Therefore, we say that the 
current is 'quenched' at B = B, and we call this field strength B ,  the 'quenching field'. 
A particularly simple form for this quenching field is obtained in the limit EF/Eo-+  0, 
i.e. in the case of a small well width: 

B+ = (l/e)[?",/z,(L - zW)]@. (11) 
The same expression is found for the special case that (Y = z,/L. Equation (11) allows 
a classical or geometric interpretation (see figure 4): a particle having a transverse 
momentum p .  = (2mEo)*/2 at z = z, will move along the curtate cycloid y = 
iL(sin q - q) - (fik,/eB+)q, z = fL(1 - cos q) if E = B,. The general expression, 
depending also on EF and a, lacks such a transparent interpretation. 
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40 

a0 

E m  

10 

0 

Figure 4. Classical trajectory of a particle in crossed 
.WO Jw .Em -lw electric and magnetic field to illustrate the quenching 

I I"* fieldB+of(11). 

In this section, we have demonstrated the lowering and broadening of the current 
peak due to the application of a perpendicular magnetic field. We have assumed that 
the resonance energy can be treated as a constant, and that the transmission peak has 
negligible width. We have only considered resonant current and charge build-up, and 
have ignored all demands of self-consistency. The quenching field, following from this 
analysis, is a consequence of the transformation by the magnetic field of extended states 
into semi-extended ones. Expressions for this field, calculated for the zero-temperature 
case, provide an estimate for the length L over which the magnetic field iseffective. In the 
next section, we present numerical calculations in which some of the above-mentioned 
restrictions are avoided. 

4. Numerical results 

To present I-V curves for structures in a perpendicular magnetic field, numerical cal- 
culations were done, assuming a GaAs/AIGaAs structure characterized by an effective 
mass of 0.067 times the free electron mass, and a band discontinuity of 0.44 eV. Barrier 
widths are 5.6nm. the well is 5.0 nm wide. Details of the model can be found in [ll]. 
Here, we only mention the adjustments to the magnetic field situation. The Schrodinger 
equation (3,4) is quadratic in coordinate z. Its basic solutions can therefore be chosen 
to be parabolic cylinder functions [lo]. However, to avoid the difficulties inherent 
in working with these special functions and to reduce computational time, we have 
approximated the potential in each of the five layers (emitter, barrier, well, barrier, 
collector) by its average value, thus obtaining plane waves at every position in the 
structure. This apparently drastic approximation turns out to have little effect on the 
I-V characteristics [U] while shortening calculations considerably. The length L over 
which the magnetic field is thought to be effective is taken to equal the structure length 
[5 ] .  The effect of the charge density in the well on the band bending is taken into 
account self-consistently . The main difference with the zero-field calculations is that the 
summation over the lateral momenta can now not be done analytically, but necessitates 
an extra loop, enormously enlarging computational times. 

In figure 5 a series of I-V curves is plotted for magnetic field strengths ranging from 
5Tto30T. Theloweringand broadeningofthecurrentpeak, anticipatedin theprevious 
section, are confirmed by the self-consistent calculations. The quenching field is more 
easily illustrated by the I-B curves of figure 6. Here, the effect of the charge build-up on 
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Figurc5.I-Vcurvesforeight different valuesofthe magnetic fieldstrength 8, resulting from 
selfsonsistent calculations. T = 77 K. 

B h t . . O  

Figureb. I-Bcurves for three valuesof the applied voltage V., resulting fromself-consistent 
calculations. T = 4.2 K. 

the band bending is seen in the small shift of the quenching field to the larger values for 
increasing applied voltage V,. The value of the quenching field, around 30 T, may seem 
experimentally out of reach. However, these unrealistically large fields are the price we 
have to pay for the simplification of equalling L with the structure length, thus greatly 
underestimating L. Neglecting arguments of self-consistency, we may say that the 
quenching field is inversely proportional to L, so that a three times larger L leads to 
fields that are accessible to experiment. 

5. Discussion 

Good agreement with the experimental findings of Ben Amor and co-workers [3,4] is 
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found. Their I-V curves (figure 1 in [4]) agree well with the ones we present in figure 5 .  
Also, the observed linear increase of the width of the current peak with E [l, 2.41 is 
confirmed by our analysis. For Bo < B < B- a linear relation holds for the voltage 
interval width and the magnetic field strength, corresponding to a slope that equals 
2fikFzW/ma. Taking zw/L = a, this agrees well with the results of [4]. For B < Bo a 
quadratic increase is predicted by (9), whereas for B > B- a change from increase to 
decrease is expected. These two regions, however, are not covered by the experimental 
data. Because of a bad choice of structure parameters, Ancilotto does not find a sub- 
stantial broadening of the current peak [SI. 

The decrease of the peak current with increasing magnetic field is found in all 
experiments [l, 41. However, this decrease does not continue as expected in our model. 
In fact, the peak current reaches a minimum around 16T for the AIInAs/GaInAs 
structure [4], and around 5 T for the GaAs/AlGaAs structure (see figure 9 in [l]). This 
is thought to be an indication that coherent tunnelling cannot be the whole story [2]. 
Sequential effects, or better inelastic scattering proceses, seem to be more important in 
GaAs/AIGaAs than in AlInAs/GaInAs. 

As a consequence, the quenching field is not directly obtainable from experiments. 
It can only be extrapolated from the initial decrease of the peak current. However, the 
linear increase of the current width with magnetic fieldstill provides a means of estimating 
the length L, over which B is to be taken into account [l]. In the GaAs/AlGaAs 
structure, L is found to be -35 nm [l], corresponding to a quenching field of about 10 T. 
In the AIInAs/GaInAs sample, the quenching field is larger, owing to a much smaller 
effective length L (8.5 nm [4]). 

The decrease of the turn-on voltage Val@), reported in [4], is not expected from our 
analysis (see (9)), nor confirmed by the measurements of [l] or the analysis in [6] .  
However, the accuracy of the data supporting this result in [4] is probably such that they 
could also support Leadbeater’s or our analysis. This minor point of difference does not 
affect the overall agreement. 

The difference between extended and semi-extended states, introduced in section 3, 
is also met in Eaves eta1 [7l. There, the two types of state are associated with ‘traversing’ 
and ‘skipping’ orbits. The latter, interacting with the emitter barrier only, contribute to 
the density in the well. In a traversing state an electron is repeatedly reflected off both 
barriers. In the semi-classical picture, the important length scale is set by the well width. 
In thequantummechanicalpicture, thisrole isplayed by theeffective length L. Although 
a theory for L is missing, it is thought that L is related to the mean free path rather than 
to the well width. Hence, both pictures may not be totally identical. 

From the derivation of (9), it is clear that the expressions for Val and Vd depend on 
the applied dispersion relation for the conduction band, in our model a simply quadratic 
one. Inclusion of non-parabolicity or an energy-dependent effective mass, or-in the 
case of holes-band mixing, will yield different expressions for these quantities. Con- 
versely, experimental determination of quantities like Val@) and V&?) provides a 
powerful method for investigating the dispersion curves [13]. 

Summarizing, we have presented a quantum-mechanical study of the effect of a 
transverse magnetic field on coherent resonant tunnelling. The calculated I-V curves 
agree well with experimental data. The quenching field, although experimentally 
obscured by incoherent processes, is still a valuable quantity, containing information 
about the resonance energy and the effective length L for the vector potential. The 
presented model provides a good description for structures in which coherent tunnelling 
is dominant. 
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