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Abstract. The peak in the current—voltage (I-V) characteristic of a double-barrier resonant-
tunnelling structure is broadened and lowered by the application of a magnetic field paraliel
to the layers. The broadening of the peak is roughty linear in the field. The lowering is
completed at a field strength termed the quenching field. Both effects are described within
amodel of coherent tunnelling in a self-consistent potential. The calculated I-V curves agree
well with experimental data.

1. Introduction

The double-barrier resonant-tunnelling (DBRT) structure is a well-known example of the
novel devices based on the vertical transport mechanism. Its ability to carry current is
based on the existence of a resonant state due to the quantum well between the two
barriers. This state can be accessible to electrons in the Fermi sea of the reservoirs,
formed by the doped regions that sandwich the DBRT structure. If we assume the
tunnelling to be coherent, accessibility amounts to the demand that the energy of the
resonant state is in the Fermi window of the reservoir. Since the resonance energy with
respect to the reservoir is tunable by applying a voltage difference across the structure,
there is always an interval of applied voltages where a current is possible. This vertical
transport mechanism is essentially one-dimensional. The lateral dimensions only come
into play in determining the density of states. .

When we apply a magnetic field to a DBRT structure, perpendicular to the growth
axis and parallel to the barrier layers, some basic aspects of the above picture are
changed. The tunnellingis no longer dependent on the transverse motion alone. Accessi-
bility of the resonant state is determined by the exchange of momentum between the
transverse and lateral directions effected by the magnetic field. This leads to a smaller
current density at voltages where, in the zero-field case, current was possible since some
of the formerly resonant electrons are now filtered out on the basis of their lateral
motion. At voltages where, in the zero-field case, no current was possible, however,
there will now be some current density found since the magnetic field opens up the
resonant channel for certain lateral momenta. In fact, the application of a perpendicular
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field has made the tunnelling into an essentially two-dimensional problem. In com-
parison with the zero-field case, the resulting current peak is broadened and lowered.

The implications of the magnetic field can also be described in another way. Let us
introduce the difference between resonant states that are extended in both reservoirs
(and which we will call ‘extended’ states), and resonant states that are evanescent in one
of the two reservoirs (and which we will call ‘semi-extended’ states). The extended
resonant states contribute to both the charge density in the well and the current density
through the structure, whereas the semi-extended resonant states contribute only to the
charge density in the well. In the zero-field case this distinction is not needed since
all resonant states are extended. The perpendicular field, however, introduces the
transformation of extended states into semi-extended ones, and the larger the applied
field strength, the more complete is this transformation. At a certain field strength, all
electrons are forced into semi-extended states, and hence the current will be zero,
irrespective of applied voltage. This effect of the magnetic field can be called aquenching
of the current, and the field strength above which this takes place is named the quenching
field.

Experimental evidence for these effects of the transverse magnetic field was pre-
sented by Guéret et al [1], Rossel er al {2] and Ben Amor et af [3, 4], who reported a
broadening and lowering of the current peak. Some theoretical work along semi-classical
lines was done by Eaves and coworkers [5-7], whose distinction between ‘traversing’ and
‘skipping’ orbits parallels our extended/semi-extended states. A quantum-mechanical
approach was undertaken by Ancilotto [8], considering a somewhat different structure
(showing less interesting properties). We only mention here the work of Platero ef al {9]
which constitutes a totally different approach.

In this paper, a2 quantum-mechanicai description of coherent resonant tunnelling in
the presence of a perpendicular magnetic field is presented, Starting from the Schré-
dingerequation (section 2), we derive expressions for the voltage interval where resonant
charge build-up takes place, and for the voltage interval where resonant current is found
(section 3). In section 4, numerical results are presented for GaAs/AlGaAs-based
structures. Finally we will compare our results with both experimental and theoretical
studies (section 5).

2. Schridinger equation with magnetic field

The usual way to introduce a magnetic field B into the Schrédinger equation is via the
substitution (A/0}V — (A/1)V + eA, where A is the vector potential, related to B via B =
V X A, Let us choose A to be defined by:

0, 0, 0 z<0
A=5(0,-Bz, O) 0<z<L (1)

(0, -BL,0) L<z
yvielding a magnetic field in the x-direction of strength Bif0 < z < L, and of zero strength
outside this interval. Equation (1) implies a Coulomb gauge V - A = 0 and a coupling of
the magnetic field to the y-component of the momentum only. This choice for a magnetic
field confined to the interval 0 < z < L agrees with the usual and accepted approach in

device modelling [1, 5, 6]. It is also supported by the physical processesin the reservoirs,
where the bulk scattering of carriers will cause effective broadening of the Landau levels
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and, eventually a density of states approaching the zero-field behaviour [5]. The value
of L is thus expected to be related to the mean free path of electrons in the reservoir. In
this paper, however, we will treat L as an extra parameter. The possibilities of deter-
mining L by experiment will be discussed in section 5. The choice (1) has the advantage
of enabling a transfer matrix approach, with plane wave solutions in the reservoirs,
which are easy to interpret in terms of current density.

We insert the vector potential of (1) into the Schrédinger equation:

(1/2m) (/)V + eA(2))* W (r) + E(2)¥(r) = E¥(r) ()

where W(r) describes the electrons in the conduction band, m is the effective mass of
this band and E(z) is the band minimum. The z-axis is taken along the growth direction.
In general, the materials of the barriers and the well will differ in both effective mass
and band gap. We will, however, take into account only the latter difference, and write
E.(z), assuming m independent of z. In the reservoir situated at z < 0 we have both
E(z) = 0and A(z) = 0, so that the solutions of (2) are plane waves

exp(ik,x) exp(ik,y}[A exp(ik.z) + B exp(—ik.z)]

at energy E = (h%/2m) (k2 +k2 + k2). Since the Hamiltonian in (2) is invariant under
translation in the lateral directions, the wave-number components k, and k, (con-
trary to k,) are constants of motion. Substituting for ¥(r) the factorization exp(ik x) ex-
p(ik,y)F(z), we have (2) to read:
—(#*/2m)(d?/d22)F(2) + E(2)F(z) + U(z; ky, B)F(2)

= (E - (8 /2m) (% + k7)) F(z) = (B*k3/2m)F(z) (3)

where U(z; k,,, B) is a poteﬁtiaI energy term introduced by the magnetic field, that is
quadratic in z and B and linear in k, (see figure 1):

0 z<0
U(z; ky, B) =4 (e*B*[2m)z(z — 2k, [eB) O<z<L 4
(e*B*/2m)L(L — 2%k, /eB) L<z

In the absence of E,(z) in (3), we would find for 0 <z<L that F(z)=
A'D(L)+ B'D_,_(if), where D,(&) is the parabolic cylinder function,
v = fi(k? + k2)/2eB — }, and { = V/(2¢B/k) (z — hik,/eB) [10]. A restriction to 2 non-
negative integer » would give the well-known Landau Jevels. Usually, it is the require-
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ment for normalization on the z-interval (—, + ) that leads to this quantization of
energy [10]. However, since the quadratic potential in (4) applies only to0 < z < L, we
have no Landau quantization in this tunnelling problem, and hence no Landau levels.
Instead, we calculate the transmission and reflection coefficients for incoming plane
waves labelled with k, and scattered by a k,-dependent potential. The eigenfunctions
F(z; ky, k,) now depend on the lateral momentum, in contrast to the zero-field case,
although the eigenvalues still depend on &, only. This means that (3) constitutes a
tunnelling problem where we have to treat every combination (k,, k,) separately. The
resulting transmission and reflection coefficients will be functions of both transverse and
lateral momentum.

3. Voltage interval of resonant current

To find the voltage interval where resonant charge built-up or current takes place we
make use of the fact that the resonant energy with respect to the band minimum in the
well is almost independent of the exact potential structure. Hence, we determine this
energy Eyin the unbiased zero-field situation and treat it as a constant. In this section,
we also assume a constant electric field in the structure, neglecting the effect of the
charge build-up in the well on the band bending. The potential energy in the well then
equals —wxeV,, where V) is the applied voltage and 0 < & < 1 depends on the structure
parameters. For identical barriers, @ = 1/2. Let us first consider the zero magnetic field
case. For the resonance energy to be in the Fermi window of the reservoir means:
0 < Ey — aeV, < Ef, hence the voltage interval for resonant current and charge build-
up is: (EQ - EF}/eﬂf < Va < En/ea'.

In the case of a magnetic field, the potential term U(z; &,, B) of (4) should be
included, making these relations dependent on &,. Also, at fixed k,, the possible energies
related to the transverse momentum are limited to 0 < A2k2/2m < Ep — #2k2/2m, i.e.
the window for the resonance energy is reduced. The condition for resonant charge
build-up therefore becomes:

0 < Ey — aeV, + U(z,; ky, B) < Ep ~ 8%k} /2m (3)

where z,, is the position of the well. This can again be translated into a corresponding
voltage interval:

Val(kya B) < Va < Vaz(k_)n B)
Valk,, B) = (E, — Egp)/ea + (hk, — eBz,)? [2mea (6)
Valk,, B) = Ey/ex + eB*z% [2ma — hk Bz, /ma

which is sketched in figure 2. For resonant current to flow, an additional condition with
no zero-field analogue is to be introduced. The transverse momentum in the collector
reservoir should be positive in order to enable an electron o contribute to the current.
This yields:

Ey—aeV,+ Uz, k,,B)> —eV,+ U(L; k,, B) )
which is trivial for B = 0. Translated in terms of V,, (7) reads:
V> Valk,, By =[1/(1 - a)](—Ep/e + eB*(L* — 23)/2m - hk,B(L — z,)/m) (8)

(see ﬁgure 2). If an electron state with momentum k, and resonant , satisfies (6) but
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ferent values of the magnetic field B. The states cor-
responding to points in the enclosed area contribute

0.0 L L : to the charpge density in the well. The hatched area
" o ! ¢ ' ¢ ' represents states that, in addition, contribute to the
ky/kF current through the structure.

not (8), it contributes to the charge density in the well only. This is a so-called ‘semi-
extended’ state. If the electron state meets both conditions (6) and (8), it contributes to
both the charge and the current density, and is called ‘extended’.

The voltage interval that results from (6) depends on k,. Thus, at a given applied
voltage V,, (6) will be met by only a fraction of all k, -values This implies a decrease in
charge density, compared with the zero-field case. Usmg the fact that A%k2/2m < E,
we can define voltage intervals where we have taken into account the contributions of
all k,. For the charge build-up this means that we have to find the minimum of V;,(k,),
denoted by Va1, and the maximum of V,,(k,), denoted by Va2 The latter is equal to
Vi(—kg) for all field strengths, kg being the Fermi wave-number. For B < By= hkg/
ez, Va1 = Vo(eBz,/h). For larger field strengths, it is V,;(+&g). Hence, we find for the
sum of all k,-contributions that, in order for the charge in the well to be non-zero at V.,
V, should satzsfy

v—'al(B) < Va < 1‘7‘%12(3)
?al(B) - { al(eBzw/ﬁ B) = (Eo — EF)/BCk B< By (9)
V(+kg, B) = Ey/ex + e2%B(B — 2By)/2ma B> B,

Vo(B) = Vyy(—ks, B) = Eyfe a + €22 B(B + 2B,)/2ma.

These interval bounds as functions of B are shown in figure 3(a). From (9) we see that
dV,,/dB =0 and dV,,/dB > 0, hence both bounds are non-decreasing functions of B.
Since the upper bound increases faster, the total voltage interval for charge build-up is
broadened, see figure 3(6). For B = B, this broadeaing is linear in B: AV,=V,—
Va = ez24BB, 2ma = (2hkez,,/me)B.

To find out whether the total voltage interval for resonant current is also broadened,
we have to take into account the effect of (8) on the bounds. This is an easy but
complicated matter, depending on &, z,/L and Eg/E,. Therefore, we will only give the
results for the special case that (z,/L)? <& <z,/L and Ep<E,/(1 ~2aL/z,+
al?/z2). Since, experimentally & =~ 1/2, z,/L = 1/2 and Ey> Ep, this is the most
relevant case. For small field strengths, we find the same bounds as in the charge build-
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up situation, as expected. If, however, B exceeds a value V_:

Bk zy/L—a i[ ( z,/L — & )2 1 ]1!2
Be =t oGy T\ e T ) TP iy

the lower bound is changed to:
VH(B) = [zy/L = &l (~Eo/e + eB*z,(L = z.)/2m)

whereas the upperbound remains unchanged, V&(B) = V(B). This new lower bound
Vi (B) increases more rapidly than the upper bound, so that at B = B, the two bounds
coincide and the voltage interval disappears completely. Therefore, we say that the
current is ‘quenched’ at B = B, and we call this field strength B, the ‘quenching field’.
A particularly simple form for this quenching field is obtained in the limit E¢/Ey— 0,
i.e. in the case of a small well width:

B. = (1/e)[2mE [z, (L - z,)]'". (11)

The same expression is found for the special case that o = z,,/L. Equation (11) allows
a classical or geometric interpretation (see figure 4): a particle having a transverse
momentum p, = (2mEg)'*? at z =z, will move along the curtate cycloid y =
sL(sin ¢ — @) — (hkg/eB.)p, z =34L(1 — cos @) if B = B.. The general expression,
depending also on Ep and a, lacks such a transparent interpretation.
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In this section, we have demonstrated the lowering and broadening of the current
peak due to the application of a perpendicular magnetic field. We have assumed that
the resonance energy can be treated as a constant, and that the transmission peak has
negligible width. We have only considered resonant current and charge build-up, and
have ignored all demands of self-consistency. The quenching field, following from this
analysis, is a consequence of the transformation by the magnetic field of extended states
into semi-extended ones. Expressions for this field, calculated for the zero-temperature
case, provide an estimate for the length I over which the magneticfield iseffective. Inthe
next section, we present numerical calculations in which some of the above-mentioned
restrictions are avoided. '

4. Numerical results

To present I-V curves for structures in a perpendicular magnetic field, numerical cal-
culations were done, assuming a GaAs/AlGaAs structure characterized by an effective
mass of 0.067 times the free electron mass, and a band discontinuity of 0.44 eV. Barrier
widths are 5.6 nm, the well is 5.0 nm wide. Details of the model can be found in [11].
Here, we only mention the adjustments to the magnetic field situation. The Schrédinger
equation (3, 4) is quadratic in coordinate z. Its basic solutions can therefore be chosen
to be parabolic cylinder functions [10]. However, to avoid the difficulties inherent
in working with these special functions and to reduce computational time, we have
approximated the potential in each of the five layers (emitter, barrier, well, barrier,
collector) by its average value, thus obtaining plane waves at every position in the
structure. This apparently drastic approximation turns out to have little effect on the
I-V characteristics [12] while shortening calculations considerably. The length L over
which the magnetic field is thought to be effective is taken to equal the structure length
[5]. The effect of the charge depsity in the well on the band bending is taken into
account self-consistently, The main difference with the zero-field calculations is that the
summation over the lateral momenta can now not be done analytically, but necessitates
an extra loop, enormously enlarging computational times.

In figure 5 a series of I-V curves is plotted for magnetic field strengths ranging from
5 Tto30T. Thelowering and broadening of the current peak, anticipated in the previous
section, are confirmed by the self-consistent calculations. The quenching field is more
easily illustrated by the /-B curves of figure 6. Here, the effect of the charge build-up on
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Figure 6. I-B curves for three values of the applied voltage V,, resulting from self-consistent
calculations. T=42K,

the band bending is seen in the small shift of the quenching field to the larger values for
increasing applied voltage V. The value of the quenching field, around 30 T, may seem
experimentally out of reach. However, these unrealistically large fields are the price we
have to pay for the simplification of equalling L with the structure length, thus greatly
underestimating L. Neglecting arguments of self-consistency, we may say that the
quenching field is inversely proportional to L, so that a three times larger L leads to
fields that are accessible to experiment.

5. DPiscussion

Good agreement with the experimental findings of Ben Amor and co-workers {3, 4] is
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found. Their I-V curves (figure 1 in {4]) agree well with the ones we present in figure S.
Also, the observed linear increase of the width of the current peak with B [1, 2, 4] is
confirmed by our analysis. For By <<B < B. a linear relation holds for the voltage
interval width and the magnetic field strength, corresponding to a slope that equals
2hkez,/ma. Taking z,/L = «, this agrees well with the results of [4]. For B< Bg a
quadratic increase is predicted by (9), whereas for B > B_ a change from increase to
decrease is expected. These two regions, however, are not covered by the experimental
data. Because of a bad choice of structure parameters, Ancilotto does not find a sub-
stantial broadening of the current peak [8].

The decrease of the peak current with increasing magnetic field is found in aJl
experiments [1, 4]. However, this decrease does not continue as expected in our model.
In fact, the peak current reaches a minimum around 16 T for the AllnAs/GalnAs
structure [4], and around 5 T for the GaAs/AlGaAs structure (see figure 9 in [1]). This
is thought to be an indication that coherent tunnelling cannot be the whole story [2].
Sequential effects, or better inelastic scattering proceses, seem to be more important in
GaAs/AlGaAs than in AllnAs/GalnAs.

As a consequence, the quenching field is not directly obtainable from expenments
It can only be extrapolated from the initial decrease of the peak current. However, the
linear increase of the current width with magnetic field still provides a means of estimating
the length L, over which B is to be taken into account [1]. In the GaAs/AlGaAs
structure, L is found to be ~35 nm [1], corresponding to a quenching fieid of about 10 T.
In the AllnAs/GalnAs sample, the quenching field is larger, owing to a much smaller
effective length L (8.5 nm [4]).

The decrease of the turn-on voltage V,,(B), reported in [4], is not expected from our
_ analysis {see (9)), nor confirmed by the measurements of [1] or the analysis in [6].
However, the accuracy of the data supporting this result in [4] is probably such that they
could also support Leadbeater’s or our analysis. This minor point of difference does not
affect the overall agreement.

The difference between extended and semi-extended states, introduced in section 3,
is also met in Eaves et af [7]. There, the two types of state are associated with ‘traversing’
and ‘skipping’ orbits. The latter, interacting with the emitter barrier only, contribute to
the density in the well. In a traversing state an electron is repeatedly reflected off both
barriers. In the semi-classical picture, the important length scale is set by the well width.
Inthe quantum mechanical picture, thisrole is played by the effective length L. Although
atheory for L is missing, it is thought that L is related to the mean free path rather than
to the well width., Hence, both p1ctures may not be totally identical.

From the derivation of (9), it is clear that the expressnons for V,, and V,, depend on
the applied dispersion relation for the conduction band, in our model a simply quadratic
one. Inclusion of non—paraboiicity or an energy-dependent effective mass, or—in the
case of holes—band mixing, will yield different expressions for these quantities. Con-
versely, experimental determination of quantities like V,,(B) and V,(B) provides a
powerful method for investigating the dispersion curves [13].

Summarizing, we have presented a quantum-mechanical study of the effect of a
transverse magnetic field on coherent resonant tunnelling. The calculated I~V curves
agree well with experimental data. The quenching field, although experimentaily
obscured by incoherent processes, is still a valuable quartity, containing information
-about the resonance energy and the effective length L for the vector potential. The
presented model provides a good description for structures in which coherent tunnelling
is dominant.
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